
QSICamera

OS X Software for
Quantum Scientific
Imaging, Inc.
500/600-series CCD
Cameras

Copyright © 2012, Joe Shimkus joe@shimkus.com

Software Specification

Revision 6.0.3c0

August 22, 2012

Joe Shimkus

mailto:joe@shimkus.com?subject=QSICamera
mailto:joe@shimkus.com?subject=QSICamera

License! i
Change Log! ii
Introduction! v
Notices ! vi
Requirements ! vi
References ! vi
Terminology! vi
What You’ve Downloaded! vii
What This Document Documents ! viii
All You Need To Know (mostly)! 1

Object Hierarchy! 1
Finding Cameras! 1
Using a Camera! 1

Finding Cameras (for the developer)! 2
Common! 3

QSIStatus! 3
QSIObject! 3

Communications ! 5
Object Hierarchy! 5
<<interface>> QSIComms! 6
QSIComms! 8

Components ! 15
Object Hierarchy! 15
<<interface>> QSICamera! 16
QSICamera! 63
QSICameraAdvancedDetails! 64
QSICameraAdvancedSettingsParameters! 66
QSICameraAntiBloom! 67
QSICameraAutoZero! 68
QSICameraAutoZeroControl! 69

Copyright © 2012, Joe Shimkus

QSICameraCCDSpecs! 70
QSICameraCombinedDetails! 71
QSICameraCoolerState! 72
QSICameraDetails! 73
QSICameraExposureParameters! 75
QSICameraExposureRequest ! 76
QSICameraFanMode! 77
QSICameraGain! 78
QSICameraGuiding! 79
QSICameraPreExposureFlush! 80
QSICameraReadoutSpeed! 81
QSICameraShutterPriority! 82
QSICameraState! 83
QSICameraTemperature! 84
QSICameraTemperatureParameters! 85
QSIFilter! 86

Copyright © 2012, Joe Shimkus

License
Copyright (c) 2012, Joe Shimkus

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• The name of Joe Shimkus may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

i
Copyright © 2012, Joe Shimkus

Change Log

Date Author Change
August 22, 2012 Joe Shimkus • Changed all client-facing C data structures to

Objective-C classes. This was driven by the
realization that one of the data structures contained
object references which resulted in QSICamera being
incompatible with ARC-based software.

APIs that previously took a pointer to one of the C
data structures for returning information now take a
pointer to an object pointer of the appropriate class
and return an auto-released instance of the class.

With these changes QSICamera should seamlessly
operate with manual reference counting, garbage-
collected and ARC-based software.

• Added the QSICamera class method
simulatedCameras. This method returns an array
of cameras which, while not allowing soup-to-nuts
testing of QSICamera, allows testing of its higher-
level functionality.

More usefully, these simulated cameras allow the
development of applications incorporating
QSICamera without requiring the actual connection of
a camera from QSI. Of course, you will want to test
anything you develop against real cameras.

ii
Copyright © 2012, Joe Shimkus

Date Author Change
August 15, 2012 Joe Shimkus Corrected issues identified via running Xcode's static

analysis tool.

Added a new class (QSICameraDefaults) interfacing with
the Cocoa NSUserDefaults system. Multiple cameras are
supported via this system by identifying the specific
camera's settings based on the combination of its model
and serial numbers.

Implemented automatic persistence of the following
settings whenever they are explicitly (i.e., not by
performing an exposure) modified via the QSICamera
API:

• anti-blooming
• cooler state
• cooler set point
• fan mode
• camera gain
• LED alert setting
• pre-exposure flushing
• readout speed
• shutter priority
• sound alert setting

The persistent settings values are automatically applied to
a camera following successful connection.

Because of the above persistent settings changes, I
eliminated the QSICamera connect: method which took a
preferences structure (the preferences structure itself was
also removed).

February 26, 2012 Joe Shimkus Corrected problems related to 600-series camera support.

Moved public methods of QSICamera to a QSICamera
protocol.

iii
Copyright © 2012, Joe Shimkus

Date Author Change
October 27, 2011 Joe Shimkus Changed version number to reflect the version of QSI

software from which this code was created. This doesn’t
mean that QSICamera has all the same functionality
(particularly in regard to functionality that can be created
building on what is already present) but that particular
changes (such as default values) are consistent with the
QSI software of the same version number.

Removed the ability to set the auto-zero control
parameters. Per QSI, this is something end-users should
not be modifying.

Added support for 600-series cameras.

Added trim adjustment field to QSIFilter.

Minor corrections.

November 15, 2010 Joe Shimkus Correction to discussion of startingColumn and
startingRow to indicate they are in units of their respective
binning values.

Added an autoZeroControl: method to read the
current settings for the camera.

November 11, 2010 Joe Shimkus Initial version

iv
Copyright © 2012, Joe Shimkus

Introduction
Trying to minimize the amount of equipment to carry into the field, I had been attempting to do
astrophotography utilizing a digital SLR. While some have certainly produced wonderful results with a
DSLR, I found it to be more taxing than enjoyable and have not produced any images that I would choose
to share. As a consequence, I decided to the bite the bullet and be willing to carry more equipment if that
equipment could give me better results; thus I chose to purchase a dedicated CCD camera.

As I looked into the various cameras available and tried to objectively weigh their pros and cons, there
was one absolute that had to be met: the camera had to be controllable utilizing native software for Mac
OS X. When all was said and done, I chose a Quantum Scientific Imaging (QSI), Inc. 583 camera with
integrated filter wheel.

While the QSI 583 met all the requirements I had established, I was disappointed that QSI itself didn’t
incorporate some control software for Macs in their product package as they do for Windows. Further,
while I have no complaints with the third-party software I purchased, the number of choices were severely
limited.

QSI, to their credit, makes a set of C++ source code available for creating a library that can be used to
control their 500 series cameras. While QSI’s website specifically refers to Linux in relation to this code,
it’s source and I figured I could construct something from it for Mac OS X. What you have downloaded is
the fruit of that effort.

v
Copyright © 2012, Joe Shimkus

Notices
The software has been built solely on x86 architecture and tested solely using a QSI 583ws camera.

Requirements

References
QSI 500 Series Linux API Reference Manual, Quantum Scientific Imaging, Inc.

Terminology
• In, used in method parameter descriptions. Indicates that the parameter is input to the method. In the

case of buffer pointers, indicates that the contents of the buffer is input to the method.

• Out, used in method parameter descriptions. Indicates that the parameter is output from the method.
In the case of buffer pointers, indicates that the contents of the buffer is output from the method.

vi
Copyright © 2012, Joe Shimkus

http://www.qsimaging.com/docs/QSI%20Linux%20API%20Reference%206.0.pdf
http://www.qsimaging.com/docs/QSI%20Linux%20API%20Reference%206.0.pdf

What You’ve Downloaded
Although QSI provides the C++ library source code I previously mentioned, it is not a complete library
solution. The software has dependencies on further code from Future Technology Devices International
(FTDI) Ltd. as well as libusb. This is not what I wanted. What I wanted was to produce something that
would work natively on Mac OS X, had no dependencies beyond what is included on every Mac, and
would also be easy enough to deploy and use such that it might help spark efforts in the development of
more Mac software for use with these cameras in scientific settings. To meet these self-imposed
requirements, I had to understand QSI’s software, FTDI’s software and learn about USB. Further, I had to
decide if I would attempt to utilize QSI’s software as-is or potentially modify it as part of achieving my
goals.

As part of my vision for ease of use I included thoughts on the ability to extend the software to support
future camera products. This argued in favor of an object-oriented approach. Well, QSI’s provided
software was written in C++ so that would hopefully prove beneficial to such an approach. A drawback,
however, of sticking with C++ would be the fact that objects created from it wouldn’t be able to directly
plug in to the Cocoa libraries from Apple. Certainly they would be able to utilize the Cocoa frameworks’
functionality, but they themselves wouldn’t be able to be directly referenced from the Cocoa frameworks
(e.g., they couldn’t be directly stored in instances of NSArray). On top of this I knew that the
introspective capabilities of Objective-C would allow extending the object hierarchy of supported cameras
in a simple, low-effort manner that just wouldn’t be attainable using C++. The choice was clear. I
wouldn’t utilize QSI’s C++ code as-is nor would I modify it. Rather, I would construct a new hierarchy of
objects designed to integrate with Cocoa, providing the necessary functionality. QSI’s source would be
used solely as a reference.

So now you know that the software you’re getting is:

• An object-oriented hierarchy supporting QSI 500 and 600 series cameras

• Written in Objective-C

• Integrated with Apple’s Cocoa libraries

• all objects ultimately descend from NSObject

• Dependent only on natively provided functionality of Mac OS X

• needs to be linked with the Cocoa and IOKit frameworks

Additionally, the software internally utilizes the Objective-C @synchronized() directive to serialize
commands sent to the camera and is thus safe for use in multithreaded environments.

vii
Copyright © 2012, Joe Shimkus

What This Document Documents
Essentially, what is documented are the entities identified in the All You Need To Know (mostly) section
together with supplementary objects, enumerations and structures necessary to utilize those entities.
Each section does, however, contain a diagram of the entire class hierarchy implemented by that
section’s software.

viii
Copyright © 2012, Joe Shimkus

1. All You Need To Know (mostly)
If you just want to jump in and put the software to work, this is the section for you. The details of the
various objects are presented later on; this section will simply give you a high-level view of how you can
immediately utilize the software.

1.1. Object Hierarchy

<<interface>>
QSIComms

QSIComms QSICamera

1.2. Finding Cameras
Assuming you have your QSI camera(s) turned on and plugged in to your Mac, to have the QSICamera
software find them…

NSArray *cameras = [QSIComms findAllCameras];

As you can see, QSIComms will return an NSArray with all the QSI cameras it was able to find. If no
cameras were identified QSIComms will still return an NSArray, it will just have no entries. If something
truly horrible occurred you won’t even get an array back, so always check for nil.

Following the Cocoa reference counting object lifecycle paradigm, the NSArray has been auto-released
so if you want it to stick around you’ll need to retain it.

1.3. Using a Camera
Once you have the array of cameras you’ll need to decide which one(s) to use; if you only have one
camera the decision is easy. Identifying a camera for use in the case where there are multiple cameras
attached to your Mac is a little more complicated. As a camera’s specifics are not available until you
establish a connection to it and the order of the cameras in the returned NSArray is not deterministic, to
disambiguate the cameras you need to iterate over them establishing a connection to each one and
checking each camera’s model and serial numbers.

The process of establishing a connection to the camera is a simple one. Assuming that we wish to use
the first camera in the returned NSArray, you establish a connection to it as follows (you’ll want to keep a
reference to the camera around for performing operations):

QSICamera *camera = [cameras objectAtIndex:0]

QSIStatus status = [camera connect];

You’ll need to confirm that the status you receive from the connect is QSISuccess. If it isn’t, the
connection attempt failed.

And that’s it! You now have an established connection to your QSI camera and can begin using it.
Congratulations!

1
Copyright © 2012, Joe Shimkus

2. Finding Cameras (for the developer)
While finding cameras for someone who just wants to use the QSICamera software is straightforward, for
the developer who is trying to debug a problem or extend the software more needs to be known.

The steps to finding a camera (only USB cameras are currently supported) to be included in the NSArray
returned from QSIComms’ findAllCameras method are:

1. Use the IOKit USB methods to find all USB devices which match the correct product and vendor
identifiers

2. For each found device

2.1.Get the model name and verify that

2.1.1.It begins with “QSI”

2.1.2.It contains the appropriate series number

2.2.Get the model number and verify that it is at least three (3) ASCII characters in length

2.3.Construct a string composed of

2.3.1.“QSI”

2.3.2.The first three (3) characters of the model number

2.4. If the model number is at least four (4) ASCII characters in length and the fourth character is
“c” (denoting a color camera), append “c” to the string

2.5.Append “Camera” to the string

2.6.Use the string to locate the class object for the class with that name

2.7. If the class object is found, use it to instantiate a QSICamera object of the correct class

2.8.Add the instantiated QSICamera to the found camera array

In the case of the particular camera I own (a 583ws) the constructed string naming the appropriate class
is QSI583Camera. If I had purchased the color version of the camera the string would have been
QSI583cCamera.

Using the introspective capabilities of Objective-C allows for easy extension of the class hierarchy to
support new cameras from QSI. As an example, if QSI were to introduce a new 500-series camera called
the 598 all that would need to be done would be to add a QSI598Camera (and, if applicable, a
QSI598cCamera) class to the class hierarchy. The runtime lookup of the class object via name would
then automatically work for the new camera.

2
Copyright © 2012, Joe Shimkus

3. Common

3.1. QSIStatus
3.1.1. Semantics

Method status return value.

3.1.2. Definition
typedef enum _QSIStatus
{
 QSISuccess = 0x00000000,
 QSIFailure, // Generic failure

 // Specific errors
 QSIAbortedExposure,
 QSIAllocationFailed,
 QSICloseFailed,
 QSICommandFailed,
 QSIConnected,
 QSIControlFailed,
 QSIInvalidParameter,
 QSINoExposure,
 QSINoFilter,
 QSINoImage,
 QSINoMemory,
 QSINotConnected,
 QSINotSupported,
 QSIOpenFailed,
 QSIReadFailed,
 QSIWriteFailed
} QSIStatus;

3.1.3. Notes

3.2. QSIObject
3.2.1. Semantics

Base class for all QSICamera classes; descended from NSObject.

Provides class-based access to necessary Objective-C runtime capabilities.

3.2.2. APIs
3.2.2.1. classNamed
3.2.2.1.1. Semantics

Provides access to Objective-C runtime capability to determine a class object from its name.

3.2.2.1.2. Declaration
+ (Class) classNamed : (NSString *) aName;

3
Copyright © 2012, Joe Shimkus

3.2.2.1.3. Parameters

Name In/Out Usage

aName In The class name

3.2.2.1.4. Return Values

Value Significance

nil No class with the specified name was found

non-nil The class object of the class with the specified name

3.2.2.1.5. Notes

4
Copyright © 2012, Joe Shimkus

4. Communications

4.1. Object Hierarchy

QSI500USBComms QSI600USBComms

QSIUSBComms

QSIComms

<<interface>>
QSIComms

5
Copyright © 2012, Joe Shimkus

4.2. <<interface>> QSIComms
4.2.1. Semantics

An Objective-C protocol defining the abstract communication channel methods.

4.2.2. APIs
4.2.2.1. disconnect
4.2.2.1.1. Semantics

Disconnects from the communication channel.

If already disconnected, this is a no-op.

4.2.2.1.2. Declaration
- (QSIStatus) disconnect

4.2.2.1.3. Parameters

Name In/Out Usage

n/a n/a n/a

4.2.2.1.4. Return Values

Value Significance

QSISuccess Disconnection was successful

4.2.2.1.5. Notes

4.2.2.2. isConnected
4.2.2.2.1. Semantics

Reports as to whether or not a connection to the communication channel exists.

4.2.2.2.2. Declaration
- (bool) isConnected

4.2.2.2.3. Parameters

Name In/Out Usage

n/a n/a n/a

4.2.2.2.4. Return Values

Value Significance

YES A connection exists

6
Copyright © 2012, Joe Shimkus

Value Significance

NO A connection does not exist

4.2.2.2.5. Notes

7
Copyright © 2012, Joe Shimkus

4.3. QSIComms
4.3.1. Semantics

Implements the QSIComms interface.

Used to locate attached QSI cameras and communicate with them.

4.3.2. APIs
4.3.2.1. findAllCameras
4.3.2.1.1. Semantics

Returns an NSArray of all found QSI cameras.

4.3.2.1.2. Declaration
+ (NSArray *) findAllCameras;

4.3.2.1.3. Parameters

Name In/Out Usage

n/a n/a n/a

4.3.2.1.4. Return Values

Value Significance

NSArray * An array containing all found QSI cameras.

If nil, an error occurred during processing.

4.3.2.1.5. Notes
The returned NSArray may contain no cameras.

4.3.2.2. connect
4.3.2.2.1. Semantics

Establishes the communication channel connection.

4.3.2.2.2. Declaration
- (QSIStatus) connect;

4.3.2.2.3. Parameters

Name In/Out Usage

n/a n/a n/a

8
Copyright © 2012, Joe Shimkus

4.3.2.2.4. Return Values

Value Significance

QSISuccess The method completed successfully.

4.3.2.2.5. Notes

4.3.2.3. extendedReadTimeout
4.3.2.3.1. Semantics

Reports the value for the extended read timeout; the value is in milliseconds.

4.3.2.3.2. Declaration
- (uint16_t) extendedReadTimeout;

4.3.2.3.3. Parameters

Name In/Out Usage

n/a n/a n/a

4.3.2.3.4. Return Values

Value Significance

any The timeout in milliseconds

4.3.2.3.5. Notes

4.3.2.4. extendedWriteTimeout
4.3.2.4.1. Semantics

Reports the value for the extended write timeout; the value is in milliseconds.

4.3.2.4.2. Declaration
- (uint16_t) extendedWriteTimeout;

4.3.2.4.3. Parameters

Name In/Out Usage

n/a n/a n/a

4.3.2.4.4. Return Values

Value Significance

any The timeout in milliseconds

9
Copyright © 2012, Joe Shimkus

4.3.2.4.5. Notes

4.3.2.5. purge
4.3.2.5.1. Semantics

Discards any outstanding data waiting to be either read or written.

4.3.2.5.2. Declaration
- (QSIStatus) purge;

4.3.2.5.3. Parameters

Name In/Out Usage

n/a n/a n/a

4.3.2.5.4. Return Values

Value Significance

QSISuccess The method completed successfully

4.3.2.5.5. Notes

4.3.2.6. readToBuffer:numberOfBytes:
4.3.2.6.1. Semantics

Reads from the communication channel into the specified buffer for the number of bytes
specified.

4.3.2.6.2. Declaration
- (QSIStatus) readToBuffer : (void *) aBuffer
 numberOfBytes : (uint32_t *) aNumberOfBytes;

4.3.2.6.3. Parameters

Name In/Out Usage

aBuffer Out The buffer to hold the read data

aNumberOfBytes In/Out On input, the size of the buffer.

On output, the number of bytes read into the buffer.

4.3.2.6.4. Return Values

Value Significance

QSISuccess The read completed successfully

10
Copyright © 2012, Joe Shimkus

4.3.2.6.5. Notes

4.3.2.7. setReadTimeout:andWriteTimeout:
4.3.2.7.1. Semantics

Set the read and write timeouts for the communication channel to the specified values; the
values are in milliseconds.

4.3.2.7.2. Declaration
- (QSIStatus) setReadTimeout : (uint16_t) aReadTimeout
 andWriteTimeout : (uint16_t) aWriteTimeout;

4.3.2.7.3. Parameters

Name In/Out Usage

aReadTimeout In The read timeout in milliseconds

aWriteTimeout In The write timeout in milliseconds

4.3.2.7.4. Return Values

Value Significance

QSISuccess The method completed successfully

4.3.2.7.5. Notes

4.3.2.8. setToExtendedTimeouts
4.3.2.8.1. Semantics

Set the communication channel to use the extended read and write timeouts.

4.3.2.8.2. Declaration
- (QSIStatus) setToExtendedTimeouts;

4.3.2.8.3. Parameters

Name In/Out Usage

n/a n/a n/a

4.3.2.8.4. Return Values

Value Significance

QSISuccess The method completed successfully

11
Copyright © 2012, Joe Shimkus

4.3.2.8.5. Notes

4.3.2.9. setToStandardTimeouts
4.3.2.9.1. Semantics

Set the communication channel to use the standard read and write timeouts.

4.3.2.9.2. Declaration
- (QSIStatus) setToStandardTimeouts;

4.3.2.9.3. Parameters

Name In/Out Usage

n/a n/a n/a

4.3.2.9.4. Return Values

Value Significance

QSISuccess The method completed successfully

4.3.2.9.5. Notes

4.3.2.10.standardReadTimeout
4.3.2.10.1.Semantics

Reports the value for the standard read timeout; the value is in milliseconds.

4.3.2.10.2.Declaration
- (uint16_t) standardReadTimeout;

4.3.2.10.3.Parameters

Name In/Out Usage

n/a n/a n/a

4.3.2.10.4.Return Values

Value Significance

any The timeout in milliseconds

4.3.2.10.5.Notes

12
Copyright © 2012, Joe Shimkus

4.3.2.11.standardWriteTimeout
4.3.2.11.1.Semantics

Reports the value for the standard write timeout; the value is in milliseconds.

4.3.2.11.2.Declaration
- (uint16_t) standardWriteTimeout;

4.3.2.11.3.Parameters

Name In/Out Usage

n/a n/a n/a

4.3.2.11.4.Return Values

Value Significance

any The timeout in milliseconds

4.3.2.11.5.Notes

4.3.2.12.writeFromBuffer:numberOfBytes:
4.3.2.12.1.Semantics

Writes to the communication channel from the specified buffer for the number of bytes
specified.

4.3.2.12.2.Declaration
- (QSIStatus) writeFromBuffer : (void *) aBuffer
 numberOfBytes : (uint32_t *) aNumberOfBytes;

4.3.2.12.3.Parameters

Name In/Out Usage

aBuffer Out The buffer holding the data to write.

aNumberOfBytes In/Out On input, the number of bytes to write from the
buffer.

On output, the number of bytes written from the
buffer.

4.3.2.12.4.Return Values

Value Significance

QSISuccess The write completed successfully

13
Copyright © 2012, Joe Shimkus

4.3.2.12.5.Notes

14
Copyright © 2012, Joe Shimkus

5. Components

5.1. Object Hierarchy

15
Copyright © 2012, Joe Shimkus

QSI500Camera QSI600Camera

QSI520cCamera

QSI540cCamera

QSI503Camera

QSI504Camera

QSI516Camera

QSI520Camera

QSI532Camera

QSI540Camera

QSI583Camera QSI583cCamera

QSI604Camera

QSI616Camera

QSI620CameraQSI620cCamera

QSI632Camera

QSI640CameraQSI640cCamera

QSI683CameraQSI683cCamera

QSICamera QSIFilter

<<interface>>
QSICamera

<<interface>>
QSIComms

5.2. <<interface>> QSICamera
5.2.1. Semantics

An Objective-C protocol defining the abstract QSICamera public methods.

Inherits the QSIComms interface.

5.2.2. APIs
5.2.2.1. abortExposure
5.2.2.1.1. Semantics

If supported, aborts an in-progress exposure.

5.2.2.1.2. Declaration
- (QSIStatus) abortExposure;

5.2.2.1.3. Parameters

Name In/Out Usage

n/a n/a n/a

5.2.2.1.4. Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

5.2.2.1.5. Notes

5.2.2.2. advancedDetails:
5.2.2.2.1. Semantics

Returns the camera’s advanced details.

The returned object has been auto-released.

5.2.2.2.2. Declaration
- (QSIStatus) advancedDetails :
! ! (out QSICameraAdvancedDetails * *) anAdvancedDetails

5.2.2.2.3. Parameters

Name In/Out Usage

anAdvancedDetails Out The camera’s advanced details.

16
Copyright © 2012, Joe Shimkus

5.2.2.2.4. Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.2.5. Notes

5.2.2.3. advancedSettings:
5.2.2.3.1. Semantics

Returns the camera’s advanced settings.

The returned object has been auto-released.

5.2.2.3.2. Declaration
- (QSIStatus) advancedSettings :
 (out QSICameraAdvancedSettingsParameters * *)
! ! ! ! ! ! ! anAdvancedSettings;0

5.2.2.3.3. Parameters

Name In/Out Usage

anAdvancedSettings Out The camera’s advanced settings.

5.2.2.3.4. Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.3.5. Notes

5.2.2.4. autoZeroControl:
5.2.2.4.1. Semantics

Returns the camera’s auto-zero control settings.

The returned object has been auto-released.

5.2.2.4.2. Declaration
- (QSIStatus) autoZeroControl :
! (out QSICameraAutoZeroControl * *) anAutoZeroControl;

17
Copyright © 2012, Joe Shimkus

5.2.2.4.3. Parameters

Name In/Out Usage

anAutoZeroControl Out The camera’s auto-zero control settings.

5.2.2.4.4. Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.4.5. Notes

5.2.2.5. cameraState:
5.2.2.5.1. Semantics

Returns the camera’s current state.

5.2.2.5.2. Declaration
- (QSIStatus) cameraState : (out QSICameraState *) aCameraState;

5.2.2.5.3. Parameters

Name In/Out Usage

aCameraState Out The camera’s state.

5.2.2.5.4. Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.5.5. Notes

5.2.2.6. canAbortExposure:
5.2.2.6.1. Semantics

Returns whether or not the camera supports aborting an in-progress exposure.

5.2.2.6.2. Declaration
- (QSIStatus) canAbortExposure : (out bool *) aCanAbortExposure;

18
Copyright © 2012, Joe Shimkus

5.2.2.6.3. Parameters

Name In/Out Usage

aCanAbortExposure Out YES, the camera supports aborting an in-progress
exposure.

NO, the camera does not support aborting an in-
progress exposure.

5.2.2.6.4. Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.6.5. Notes

5.2.2.7. canGetCoolerPower:
5.2.2.7.1. Semantics

Returns whether or not the camera supports reporting the cooler’s power setting.

5.2.2.7.2. Declaration
- (QSIStatus) canGetCoolerPower : (out bool *) aCanGetCoolerPower;

5.2.2.7.3. Parameters

Name In/Out Usage

aCanGetCoolerPower Out YES, the camera supports reporting the cooler’s
power setting.

NO, the camera does not support reporting the
cooler’s power setting.

5.2.2.7.4. Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.7.5. Notes

19
Copyright © 2012, Joe Shimkus

5.2.2.8. canPulseGuide:
5.2.2.8.1. Semantics

Returns whether or not the camera supports usage for guiding.

5.2.2.8.2. Declaration
- (QSIStatus *) canPulseGuide : (out bool *) aCanPulseGuide;

5.2.2.8.3. Parameters

Name In/Out Usage

aCanPulseGuide Out YES, the camera supports being used to guide.

NO, the camera does not support being used to
guide.

5.2.2.8.4. Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.8.5. Notes

5.2.2.9. canSetReadoutSpeed:
5.2.2.9.1. Semantics

Returns whether or not the camera supports changing its readout speed.

5.2.2.9.2. Declaration
- (QSIStatus *) canSetReadoutSpeed :
! ! ! ! (out bool *) aCanSetReadoutSpeed;

5.2.2.9.3. Parameters

Name In/Out Usage

aCanSetReadoutSpeed Out YES, the camera supports changing its readout
speed.

NO, the camera does not support changing its
readout speed.

5.2.2.9.4. Return Values

Value Significance

QSISuccess The method completed successfully.

20
Copyright © 2012, Joe Shimkus

Value Significance

QSINotConnected There is no connection to the camera.

5.2.2.9.5. Notes

5.2.2.10.canSetTemperature:
5.2.2.10.1.Semantics

Reports whether or not the camera supports setting temperature control.

5.2.2.10.2.Declaration
- (QSIStatus) canSetTemperature : (out bool *) aCanSetTemperature;

5.2.2.10.3.Parameters

Name In/Out Usage

aCanSetTemperature Out YES, the camera supports setting temperature
control.

NO, the camera does not support setting temperature
control.

5.2.2.10.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.10.5.Notes

5.2.2.11.ccdHeight:
5.2.2.11.1.Semantics

Returns the CCD height (i.e., number of rows) in pixels.

5.2.2.11.2.Declaration
- (QSIStatus) ccdHeight : (out uint16_t *) aHeight;

5.2.2.11.3.Parameters

Name In/Out Usage

aHeight Out The CCD’s number of rows.

21
Copyright © 2012, Joe Shimkus

5.2.2.11.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.11.5.Notes

5.2.2.12.ccdTargetTemperature:
5.2.2.12.1.Semantics

Returns the temperature (°C) the CCD has been targeted to attain.

5.2.2.12.2.Declaration
- (QSIStatus) ccdTargetTemperature :
! ! ! ! (out double *) aTargetTemperature;

5.2.2.12.3.Parameters

Name In/Out Usage

aTargetTemperature Out The CCD’s target temperature (°C).

5.2.2.12.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.12.5.Notes

5.2.2.13.ccdTemperature:
5.2.2.13.1.Semantics

Returns the current temperature (°C) of the CCD.

5.2.2.13.2.Declaration
- (QSIStatus) ccdTemperature : (out double *) aCCDTemperature;

5.2.2.13.3.Parameters

Name In/Out Usage

aCCDTemperature Out The CCD’s current temperature (°C).

22
Copyright © 2012, Joe Shimkus

5.2.2.13.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.13.5.Notes

5.2.2.14.ccdWidth:
5.2.2.14.1.Semantics

Returns the CCD’s width (i.e., number of columns) in pixels.

5.2.2.14.2.Declaration
- (QSIStatus) ccdWidth : (out uint16_t *) aWidth;

5.2.2.14.3.Parameters

Name In/Out Usage

aWidth Out The CCD’s number of columns.

5.2.2.14.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.14.5.Notes

5.2.2.15.colorCamera
5.2.2.15.1.Semantics

Returns whether the camera is a one-shot color or monochrome camera.

5.2.2.15.2.Declaration
- (bool) colorCamera;

5.2.2.15.3.Parameters

Name In/Out Usage

n/a n/a n/a

23
Copyright © 2012, Joe Shimkus

5.2.2.15.4.Return Values

Value Significance

YES The camera is a one-shot color camera.

NO The camera is a monochrome camera.

5.2.2.15.5.Notes

5.2.2.16.columnBinning:
5.2.2.16.1.Semantics

Returns the current column binning setting.

5.2.2.16.2.Declaration
- (QSIStatus) columnBinning : (out uint16_t *) aBinning;

5.2.2.16.3.Parameters

Name In/Out Usage

aBinning Out The current column binning factor.

5.2.2.16.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.16.5.Notes

5.2.2.17.combinedDetails:
5.2.2.17.1.Semantics

Returns the combined details of the camera. This provides “one-stop” querying for the
camera’s particulars.

The returned object has been auto-released.

5.2.2.17.2.Declaration
- (QSIStatus) combinedDetails :
! ! (out QSICameraCombinedDetails * *) aCombinedDetails

5.2.2.17.3.Parameters

Name In/Out Usage

aCombinedDetails Out The camera’s details.

24
Copyright © 2012, Joe Shimkus

5.2.2.17.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.17.5.Notes

5.2.2.18.connect
5.2.2.18.1.Semantics

Establishes a connection to the camera.

Persistent settings values are applied after successfully connecting.

5.2.2.18.2.Declaration
- (QSIStatus) connect

5.2.2.18.3.Parameters

Name In/Out Usage

n/a n/a n/a

5.2.2.18.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.18.5.Notes

5.2.2.19.coolerPower:
5.2.2.19.1.Semantics

Reports the current state of the cooler’s power consumption as a percentage (0 - 100).

5.2.2.19.2.Declaration
- (QSIStatus) coolerPower : (out double *) aCoolerPower;

5.2.2.19.3.Parameters

Name In/Out Usage

aCoolerPower Out The cooler’s power consumption as a percentage.

25
Copyright © 2012, Joe Shimkus

5.2.2.19.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

5.2.2.19.5.Notes

5.2.2.20.electronsPerADU:
5.2.2.20.1.Semantics

Reports the CCD’s electrons per ADU value.

5.2.2.20.2.Declaration
- (QSIStatus) electronsPerADU : (out double *) anElectronsPerADU;

5.2.2.20.3.Parameters

Name In/Out Usage

anElectronsPerADU Out The CCD’s electrons per ADU value.

5.2.2.20.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.20.5.Notes

5.2.2.21.exposeForDuration:withShutterOpen:
5.2.2.21.1.Semantics

Utilizing the camera’s current exposure settings, initiates an exposure of the specified
duration with the shutter either open or closed.

5.2.2.21.2.Declaration
- (QSIStatus) exposeForDuration : (in uint32_t) aDuration
! ! withShutterOpen : (in bool) aShutterOpen;

26
Copyright © 2012, Joe Shimkus

5.2.2.21.3.Parameters

Name In/Out Usage

aDuration In The length of the exposure in milliseconds.

aShutterOpen In YES, the exposure is made with the shutter open.

NO, the exposure is made with the shutter closed.

5.2.2.21.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSIInvalid
Parameter

One or more of the exposure parameters is out of range.

5.2.2.21.5.Notes
The camera’s exposure settings are not validated until a request to initiate the exposure is
made. The requirements for valid exposure settings are:

• The exposure’s physical pixel width, taking into account the exposure’s starting
column and column binning setting, must not “run off the end” of the CCD; i.e., the
following condition must be satisfied:

((startingColumn + width) * columnBinning) <= number of CCD columns

• The exposure’s physical pixel height, taking into account the exposure’s starting row
and row binning setting, must not “run off the top” of the CCD; i.e., the following
condition must be satistified:

((startingRow + height) * rowBinning) <= number of CCD rows

• Neither the column nor the row binning settings can exceed their respective
maximums

• The column and row binning settings must be the same unless the camera supports
asymmetric binning

• The exposure duration must either be zero (0) or between the minimum and
maximum, inclusive, exposure values the camera supports

5.2.2.22.exposeUsingRequest:
5.2.2.22.1.Semantics

Utilizing the specified exposure request, sets the camera’s exposure settings and initiates the
exposure.

For those parameters in the exposure request controlling operations that the camera does
not support (e.g., the anti-blooming setting), the QSINotSupported failures of attempting to
set them are ignored.

27
Copyright © 2012, Joe Shimkus

5.2.2.22.2.Declaration
- (QSIStatus) exposeUsingRequest :
! ! (in QSICameraExposureRequest *) anExposureRequest;

5.2.2.22.3.Parameters

Name In/Out Usage

n/a n/a n/a

5.2.2.22.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSIInvalid
Parameter

One or more of the exposure parameters is out of range.

5.2.2.22.5.Notes
As exposeUsingRequest: is built atop exposeForDuration:withShutterOpen:, the
exposure settings are validated by exposeForDuration:withShutterOpen:.
Consequently, if a QSIInvalidParameter error is returned from exposeUsingRequest:,
the camera’s exposure settings will have been changed from what they were before the
invocation of exposeUsingRequest:.

5.2.2.23.exposureHeight:
5.2.2.23.1.Semantics

Returns the exposure height (i.e., number of rows) setting.

The value is in logical pixels; i.e., units of the row binning setting.

5.2.2.23.2.Declaration
- (QSIStatus) exposureHeight : (out uint16_t *) aHeight;

5.2.2.23.3.Parameters

Name In/Out Usage

aHeight Out The exposure height setting.

5.2.2.23.4.Return Values

Value Significance

QSISuccess The method completed successfully.

28
Copyright © 2012, Joe Shimkus

5.2.2.23.5.Notes

5.2.2.24.exposureLastDuration:
5.2.2.24.1.Semantics

Returns the duration of the last initiated exposure.

The value is in milliseconds.

5.2.2.24.2.Declaration
- (QSIStatus) exposureLastDuration : (out uint32_t *) aDuration;

5.2.2.24.3.Parameters

Name In/Out Usage

aDuration Out The duration of the last initiated exposure.

5.2.2.24.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINoExposure No exposure has yet been taken.

5.2.2.24.5.Notes

5.2.2.25.exposureSettings:
5.2.2.25.1.Semantics

Returns the entirety of the camera’s current exposure settings.

The returned object has been auto-released.

5.2.2.25.2.Declaration
- (QSIStatus) exposureSettings :
! (out QSICameraExposureParameters * *) anExposureSettings;

5.2.2.25.3.Parameters

Name In/Out Usage

anExposureSettings Out The camera’s current exposure settings.

29
Copyright © 2012, Joe Shimkus

5.2.2.25.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.25.5.Notes

5.2.2.26.exposureStartingColumn:
5.2.2.26.1.Semantics

Returns the starting column of the exposure in pixels.

The value is in logical pixels; i.e., units of the column binning setting.

5.2.2.26.2.Declaration
- (QSIStatus) exposureStartingColumn : (out uint16_t *) aColumn;

5.2.2.26.3.Parameters

Name In/Out Usage

aColumn Out The exposure’s starting column in pixels.

5.2.2.26.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.26.5.Notes

5.2.2.27.exposureStartingRow:
5.2.2.27.1.Semantics

Returns the starting row of the exposure in pixels.

The value is in logical pixels; i.e., units of the row binning setting.

5.2.2.27.2.Declaration
- (QSIStatus) exposureStartingRow : (out uint16_t *) aRow;

5.2.2.27.3.Parameters

Name In/Out Usage

aRow Out The exposure’s starting row in pixels.

30
Copyright © 2012, Joe Shimkus

5.2.2.27.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.27.5.Notes

5.2.2.28.exposureWidth:
5.2.2.28.1.Semantics

Returns the exposure width (i.e., number of columns) setting.

The value is in logical pixels; i.e., units of the column binning setting.

5.2.2.28.2.Declaration
- (QSIStatus) exposureWidth : (out uint16_t *) aWidth;

5.2.2.28.3.Parameters

Name In/Out Usage

aWidth Out The exposure width setting.

5.2.2.28.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.28.5.Notes

5.2.2.29.fanMode:
5.2.2.29.1.Semantics

Reports the current mode of the camera’s fans.

5.2.2.29.2.Declaration
- (QSIStatus) fanMode : (out QSICameraFanMode *) aFanMode;

5.2.2.29.3.Parameters

Name In/Out Usage

aFanMode Out The current mode of the camera’s fans.

31
Copyright © 2012, Joe Shimkus

5.2.2.29.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.29.5.Notes

5.2.2.30.filterCount:
5.2.2.30.1.Semantics

Returns the number of filter positions the camera has.

5.2.2.30.2.Declaration
- (QSIStatus) filterCount : (out uint8_t *) aFilterCount;

5.2.2.30.3.Parameters

Name In/Out Usage

aFilterCount Out The number of filter positions.

5.2.2.30.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.30.5.Notes

5.2.2.31.filterPosition:
5.2.2.31.1.Semantics

Returns which filter position is currently in place before the CCD.

The position is 1-relative.

5.2.2.31.2.Declaration
- (QSIStatus) filterPosition : (out uint8_t *) aFilterPosition;

5.2.2.31.3.Parameters

Name In/Out Usage

aFilterPosition Out The filter position currently in place before the CCD.

32
Copyright © 2012, Joe Shimkus

5.2.2.31.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINoFilter The camera has no filters.

5.2.2.31.5.Notes

5.2.2.32.filterWheelConnected:
5.2.2.32.1.Semantics

Returns if there is a filter wheel connected.

To be connected, a connection to the camera must have been established and the camera
must have a filter wheel.

5.2.2.32.2.Declaration
- (QSIStatus) filterWheelConnected :
! ! ! ! ! (out bool *) aFilterWheelConnected;

5.2.2.32.3.Parameters

Name In/Out Usage

aFilterWheel
Connected

Out YES, a connection exists to the camera and the
camera has a filter wheel.

NO, one (or both) of the following:

• there is no connection to the camera

• the camera has no filter wheel

5.2.2.32.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.32.5.Notes

5.2.2.33.focusOffset:forFilter:
5.2.2.33.1.Semantics

Reports the focus offset adjustment for the filter at the specified position.

The position is 1-relative.

33
Copyright © 2012, Joe Shimkus

5.2.2.33.2.Declaration
- (QSIStatus) focusOffset : (out int32_t *) aFocusOffset
! ! forFilter : (in uint8_t) aFilterPosition;

5.2.2.33.3.Parameters

Name In/Out Usage

aFocusOffset Out The filter’s focus offset adjustment.

aFilterPosition In The position of the filter in question.

5.2.2.33.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINoFilter The camera has no filters.

QSIInvalid
Parameter

The specified filter position is out of range.

5.2.2.33.5.Notes

5.2.2.34.fullWellCapacity:
5.2.2.34.1.Semantics

Reports the full well capacity of the camera’s CCD.

5.2.2.34.2.Declaration
- (QSIStatus) fullWellCapacity : (out double *) aFullWellCapacity;

5.2.2.34.3.Parameters

Name In/Out Usage

aFullWellCapacity Out The CCD’s full well capacity.

5.2.2.34.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

34
Copyright © 2012, Joe Shimkus

5.2.2.34.5.Notes

5.2.2.35.getName:forFilter:
5.2.2.35.1.Semantics

Reports the name assigned to the filter at the specified position.

The position is 1-relative.

5.2.2.35.2.Declaration
- (QSIStatus) getName : (out NSString * *) aName
! forFilter : (in uint8_t) aFilterPosition;

5.2.2.35.3.Parameters

Name In/Out Usage

aName Out The filter’s assigned name.

aFilterPosition In The position of the filter in question.

5.2.2.35.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINoFilter The camera has no filters.

QSIInvalid
Parameter

The specified filter position is out of range.

5.2.2.35.5.Notes

5.2.2.36.hasFilterWheel:
5.2.2.36.1.Semantics

Returns whether or not the camera has a filter wheel.

5.2.2.36.2.Declaration
- (QSIStatus) hasFilterWheel : (out bool *) aHasFilterWheel;

5.2.2.36.3.Parameters

Name In/Out Usage

aHasFilterWheel Out YES, the camera has a filter wheel.

NO, the camera does not have a filter wheel.

35
Copyright © 2012, Joe Shimkus

5.2.2.36.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.36.5.Notes

5.2.2.37.hasShutter:
5.2.2.37.1.Semantics

Returns whether or not the camera has a shutter.

5.2.2.37.2.Declaration
- (QSIStatus) hasShutter : (out bool *) aHasShutter;

5.2.2.37.3.Parameters

Name In/Out Usage

aHasShutter Out YES, the camera has a shutter.

NO, the camera does not have a shutter.

5.2.2.37.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.37.5.Notes

5.2.2.38.heatsinkTemperature:
5.2.2.38.1.Semantics

Returns the temperature (°C) of the camera’s heatsink.

5.2.2.38.2.Declaration
- (QSIStatus) heatsinkTemperature :
! ! ! ! (out double *) aHeatsinkTemperature;

5.2.2.38.3.Parameters

Name In/Out Usage

aHeatsinkTemperature Out The camera’s heatsink’s temperature (°C).

36
Copyright © 2012, Joe Shimkus

5.2.2.38.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.38.5.Notes

5.2.2.39.imageArray:
5.2.2.39.1.Semantics

Returns the image data taken by the last exposure.

If auto-zeroing is enabled, the returned image data has been auto-zeroed; the data as read
from the CCD is not modified.

5.2.2.39.2.Declaration
- (QSIStatus) imageArray : (inout NSMutableData *) anImageArray;

5.2.2.39.3.Parameters

Name In/Out Usage

anImageArray Out The image.

5.2.2.39.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINoImage There is no image available.

Failing some other error, if an exposure has been started this is
a temporary situation.

5.2.2.39.5.Notes
The provided NSMutableData destination for the image data is presumed to be large
enough to hold the image. See imageArrayWidth:height:andElementSize:.

5.2.2.40.imageArrayWidth:height:andElementSize:
5.2.2.40.1.Semantics

Returns the particulars (width, height and bytes/pixel) of the last exposed image.

Use these values to determine the necessary size (width * height * bytes/pixel) of the
NSMutableData object passed to imageArray:.

37
Copyright © 2012, Joe Shimkus

5.2.2.40.2.Declaration
- (QSIStatus) imageArrayWidth : (out uint16_t *) aWidth
! ! ! height : (out uint16_t *) aHeight
! ! andElementSize : (out uint16_t *) anElementSize;

5.2.2.40.3.Parameters

Name In/Out Usage

aWidth Out The image width in pixels.

aHeight Out The image height in pixels.

anElementSize Out The per pixel data size.

5.2.2.40.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINoImage There is no image available.

Failing some other error, if an exposure has been started this is
a temporary situation.

5.2.2.40.5.Notes

5.2.2.41.imageIsReady:
5.2.2.41.1.Semantics

Returns if an image is ready to be transferred from the camera.

If the output value is YES, the data will have already been read from the CCD into a holding
area of the camera object.

5.2.2.41.2.Declaration
- (QSIStatus) imageIsReady : (out bool *) anImageIsReady;

5.2.2.41.3.Parameters

Name In/Out Usage

anImageIsReady Out YES, an image exists ready for transfer from the
camera.

NO, there is no image ready to be transferred from
the camera.

38
Copyright © 2012, Joe Shimkus

5.2.2.41.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.41.5.Notes
Assuming an exposure has been successfully initiated, the most basic code for waiting for the
image to be ready and transferring it from the camera would be:

QSIStatus! status;
bool ! imageReady;

do
{
 status = [camera imageIsReady:&imageReady];
} while ((status == QSISuccess) && (! imageReady));

uint16_t imageWidth;
uint16_t imageHeight;
uint16_t elementSize;

if ((status == QSISuccess) && (imageReady))
{
 status = [camera imageArrayWidth:&imageWidth
 height:&imageHeight
 andElementSize:&elementSize];
}

NSMutableData *imageData;
if (status == QSISuccess)
{
 imageData = [[[NSMutableData alloc]
! ! ! initWithLength:(imageWidth * imageHeight *
! ! ! ! ! ! elementSize)] autorelease];
 if (imageData == nil)
 {
 status = QSIAllocationFailed;
 }
}

if (status == QSISuccess)
{
 status = [camera imageArray:imageData];
}

5.2.2.42.isCoolerOn:
5.2.2.42.1.Semantics

Returns whether or not the camera’s cooler is operating.

39
Copyright © 2012, Joe Shimkus

5.2.2.42.2.Declaration
- (QSIStatus) isCoolerOn : (out bool *) aIsCoolerOn;

5.2.2.42.3.Parameters

Name In/Out Usage

aIsCoolerOn Out YES, the cooler is operating.

NO, the cooler is not operating.

5.2.2.42.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.42.5.Notes

5.2.2.43.isLEDEnabled:
5.2.2.43.1.Semantics

Returns whether or not the camera’s LED status indicator is enabled.

5.2.2.43.2.Declaration
- (QSIStatus) isLEDEnabled : (out bool *) anLEDEnabled;

5.2.2.43.3.Parameters

Name In/Out Usage

anLEDEnabled Out YES, the LED status indicator is enabled.

NO, the LED status indicator is not enabled.

5.2.2.43.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.43.5.Notes

40
Copyright © 2012, Joe Shimkus

5.2.2.44.isMainCamera:
5.2.2.44.1.Semantics

Returns whether the camera is operating as the main camera or as a guider.

5.2.2.44.2.Declaration
- (QSIStatus) isMainCamera : (out bool *) aMainCamera;

5.2.2.44.3.Parameters

Name In/Out Usage

aMainCamera Out YES, the camera is operating as the main camera.

NO, the camera is operating as a guider.

5.2.2.44.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.44.5.Notes

5.2.2.45.isPulseGuiding:
5.2.2.45.1.Semantics

Returns whether or not the camera is actively performing a guide operation.

5.2.2.45.2.Declaration
- (QSIStatus) isPulseGuiding : (out bool *) anIsPulseGuiding;

5.2.2.45.3.Parameters

Name In/Out Usage

anIsPulseGuiding Out YES, the camera is actively performing a guide
operation.

NO, the camera is not actively performing a guide
operation.

5.2.2.45.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

41
Copyright © 2012, Joe Shimkus

5.2.2.45.5.Notes

5.2.2.46.isSoundEnabled:
5.2.2.46.1.Semantics

Returns whether or not the camera’s sound status indicator is enabled.

5.2.2.46.2.Declaration
- (QSIStatus) isSoundEnabled : (out bool *) aSoundEnabled;

5.2.2.46.3.Parameters

Name In/Out Usage

aSoundEnabled Out YES, the sound status indicator is enabled.

NO, the sound status indicator is not enabled.

5.2.2.46.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.46.5.Notes

5.2.2.47.maxADU:
5.2.2.47.1.Semantics

Returns the CCD’s maximum ADU value.

5.2.2.47.2.Declaration
- (QSIStatus) maxADU : (out uint32_t *) aMaxADU;

5.2.2.47.3.Parameters

Name In/Out Usage

aMaxADU Out The CCD’s maximum ADU value.

5.2.2.47.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

42
Copyright © 2012, Joe Shimkus

5.2.2.47.5.Notes

5.2.2.48.maxColumnBinning:
5.2.2.48.1.Semantics

Returns the camera’s maximum supported column binning.

5.2.2.48.2.Declaration
- (QSIStatus) maxColumnBinning : (out uint16_t *) aBinning;

5.2.2.48.3.Parameters

Name In/Out Usage

aBinning Out The maximum supported column binning.

5.2.2.48.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.48.5.Notes

5.2.2.49.maxPixelsPerBlock:
5.2.2.49.1.Semantics

Returns the maximum number of pixels the camera will read in a single operation from the
CCD.

5.2.2.49.2.Declaration
- (QSIStatus) maxPixelsPerBlock :
! ! ! ! ! (out int32_t *) aMaxPixelsPerBlock;

5.2.2.49.3.Parameters

Name In/Out Usage

aMaxPixelsPerBlock Out The maximum number of pixels the camera will read
from the CCD in a single operation.

5.2.2.49.4.Return Values

Value Significance

QSISuccess The method completed successfully.

43
Copyright © 2012, Joe Shimkus

5.2.2.49.5.Notes

5.2.2.50.maxRowBinning:
5.2.2.50.1.Semantics

Returns the camera’s maximum supported row binning.

5.2.2.50.2.Declaration
- (QSIStatus) maxRowBinning : (out uint16_t *) aBinning;

5.2.2.50.3.Parameters

Name In/Out Usage

aBinning Out The maximum supported row binning.

5.2.2.50.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.50.5.Notes

5.2.2.51.modelName:
5.2.2.51.1.Semantics

Returns the camera’s model name.

5.2.2.51.2.Declaration
- (QSIStatus) modelName : (out NSString * *) aModelName;

5.2.2.51.3.Parameters

Name In/Out Usage

aModelName Out The model name of the camera.

5.2.2.51.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

44
Copyright © 2012, Joe Shimkus

5.2.2.51.5.Notes

5.2.2.52.modelNumber:
5.2.2.52.1.Semantics

Returns the camera’s model number.

5.2.2.52.2.Declaration
- (QSIStatus) modelNumber : (out NSString * *) aModelNumber;

5.2.2.52.3.Parameters

Name In/Out Usage

aModelNumber Out The model number of the camera.

5.2.2.52.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.52.5.Notes

5.2.2.53.pixelHeight:
5.2.2.53.1.Semantics

The vertical size of the physical pixels of the CCD in microns (µm).

5.2.2.53.2.Declaration
- (QSIStatus) pixelHeight : (out double *) aHeight;

5.2.2.53.3.Parameters

Name In/Out Usage

aHeight Out The CCD’s physical pixel vertical size.

5.2.2.53.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

45
Copyright © 2012, Joe Shimkus

5.2.2.53.5.Notes

5.2.2.54.pixelWidth:
5.2.2.54.1.Semantics

The horizontal size of the physical pixels of the CCD in microns (µm).

5.2.2.54.2.Declaration
- (QSIStatus) pixelWidth : (out double *) aWidth;

5.2.2.54.3.Parameters

Name In/Out Usage

aWidth Out The CCD’s physical pixel horizontal size.

5.2.2.54.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.54.5.Notes

5.2.2.55.powerOfTwoBinning:
5.2.2.55.1.Semantics

Returns whether the camera bins in powers of two or in units of one.

5.2.2.55.2.Declaration
- (QSIStatus) powerOfTwoBinning : (out bool *) aPowerOfTwoBinning;

5.2.2.55.3.Parameters

Name In/Out Usage

aPowerOfTwoBinning Out YES, the camera bins in powers of two.

NO, the camera bins in units of one.

5.2.2.55.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

46
Copyright © 2012, Joe Shimkus

5.2.2.55.5.Notes

5.2.2.56.pulseGuide:withDuration:
5.2.2.56.1.Semantics

Instructs the camera to perform a guiding operation in the specified direction with the
specified duration (in milliseconds) or to abort any in-progress guiding operation.

If the camera has an in-progress guiding operation when this method is invoked, the in-
progress operation is aborted and the new guiding operation begun.

5.2.2.56.2.Declaration
- (QSIStatus) pulseGuide : (in QSICameraGuiding) aGuideDirection
! withDuration : (in uint16_t) aDuration;

5.2.2.56.3.Parameters

Name In/Out Usage

aGuideDirection In The direction in which to guide or an abort request.

aDuration In The duration of the guiding operation in milliseconds.

This value is ignored if an abort has been requested.

5.2.2.56.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

5.2.2.56.5.Notes

5.2.2.57.readoutSpeed:
5.2.2.57.1.Semantics

Returns the current readout speed.

5.2.2.57.2.Declaration
- (QSIStatus) readoutSpeed :
! ! ! (out QSICameraReadoutSpeed *) aReadoutSpeed;

5.2.2.57.3.Parameters

Name In/Out Usage

aReadoutSpeed Out The current readout speed.

47
Copyright © 2012, Joe Shimkus

5.2.2.57.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.57.5.Notes

5.2.2.58.rowBinning:
5.2.2.58.1.Semantics

Returns the current row binning value.

5.2.2.58.2.Declaration
- (QSIStatus) rowBinning : (out uint16_t *) aBinning;

5.2.2.58.3.Parameters

Name In/Out Usage

aBinning Out The current row binning value.

5.2.2.58.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.58.5.Notes

5.2.2.59.serialNumber:
5.2.2.59.1.Semantics

Returns the camera’s serial number.

5.2.2.59.2.Declaration
- (QSIStatus) serialNumber : (out NSString * *) aSerialNumber;

5.2.2.59.3.Parameters

Name In/Out Usage

aSerialNumber Out The serial number of the camera.

48
Copyright © 2012, Joe Shimkus

5.2.2.59.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.59.5.Notes

5.2.2.60.setAntiBlooming:
5.2.2.60.1.Semantics

Set’s the anti-blooming state of the camera.

If successful, the value is stored in the camera’s persistent settings.

5.2.2.60.2.Declaration
- (QSIStatus) setAntiBlooming :
! ! ! ! (in QSICameraAntiBloom) anAntiBlooming;

5.2.2.60.3.Parameters

Name In/Out Usage

anAntiBlooming In The desired anti-blooming state.

5.2.2.60.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

5.2.2.60.5.Notes

5.2.2.61.setCCDTargetTemperature:
5.2.2.61.1.Semantics

Set’s the CCD temperature (°C) that the cooler should attempt to achieve.

If successful, the value is stored in the camera’s persistent settings.

5.2.2.61.2.Declaration
- (QSIStatus) setCCDTargetTemperature :
! ! ! ! ! (in double) aTargetTemperature;

49
Copyright © 2012, Joe Shimkus

5.2.2.61.3.Parameters

Name In/Out Usage

aTargetTemperature In The desired CCD temperature (°C).

5.2.2.61.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

QSIInvalid
Parameter

The specified temperature is out of the supported range.

5.2.2.61.5.Notes
The range checking of this method limits the target temperature to between -100 °C and +100
°C (both exclusive); not that either of these numbers are achievable.

5.2.2.62.setColumnBinning:
5.2.2.62.1.Semantics

Sets the camera’s column binning value.

5.2.2.62.2.Declaration
- (QSIStatus) setColumnBinning : (in uint16_t) aBinning;

5.2.2.62.3.Parameters

Name In/Out Usage

aBinning In The column binning value to use.

5.2.2.62.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSIInvalid
Parameter

The specified binning value is out of the supported range.

5.2.2.62.5.Notes

50
Copyright © 2012, Joe Shimkus

5.2.2.63.setCoolerOn:
5.2.2.63.1.Semantics

Turns the camera’s cooler on and off.

If successful, the value is stored in the camera’s persistent settings.

5.2.2.63.2.Declaration
- (QSIStatus) setCoolerOn : (in bool) aCoolerOn;

5.2.2.63.3.Parameters

Name In/Out Usage

aCoolerOn In YES, turns the cooler on.

NO, turns the cooler off.

5.2.2.63.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.63.5.Notes

5.2.2.64.setExposureHeight:
5.2.2.64.1.Semantics

Set’s the exposure height in logical pixels (i.e., in units of the row binning setting)

5.2.2.64.2.Declaration
- (QSIStatus) setExposureHeight : (in uint16_t) aHeight;

5.2.2.64.3.Parameters

Name In/Out Usage

aHeight In The exposure height.

5.2.2.64.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.64.5.Notes

51
Copyright © 2012, Joe Shimkus

5.2.2.65.setExposureStartingColumn:
5.2.2.65.1.Semantics

Sets the exposure beginning column in pixels.

The value is in logical pixels; i.e., units of the column binning setting.

5.2.2.65.2.Declaration
- (QSIStatus) setExposureStartingColumn : (in uint16_t) aColumn;

5.2.2.65.3.Parameters

Name In/Out Usage

aColumn In The exposure beginning column.

5.2.2.65.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.65.5.Notes

5.2.2.66.setExposureStartingRow:
5.2.2.66.1.Semantics

Sets the exposure beginning row in pixels.

The value is in logical pixels; i.e., units of the row binning setting.

5.2.2.66.2.Declaration
- (QSIStatus) setExposureStartingRow : (in uint16_t) aRow;

5.2.2.66.3.Parameters

Name In/Out Usage

aRow In The exposure beginning row.

5.2.2.66.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.66.5.Notes

52
Copyright © 2012, Joe Shimkus

5.2.2.67.setExposureWidth:
5.2.2.67.1.Semantics

Set’s the exposure width in logical pixels (i.e., in units of the column binning setting)

5.2.2.67.2.Declaration
- (QSIStatus) setExposureWidth : (in uint16_t) aWidth

5.2.2.67.3.Parameters

Name In/Out Usage

aWidth In The exposure width.

5.2.2.67.4.Return Values

Value Significance

QSISuccess The method completed successfully.

5.2.2.67.5.Notes

5.2.2.68.setFanMode:
5.2.2.68.1.Semantics

Sets the mode of the camera’s fans.

If successful, the value is stored in the camera’s persistent settings.

5.2.2.68.2.Declaration
- (QSIStatus) setFanMode : (in QSICameraFanMode) aFanMode;

5.2.2.68.3.Parameters

Name In/Out Usage

aFanMode In The fan mode to set.

5.2.2.68.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

5.2.2.68.5.Notes

53
Copyright © 2012, Joe Shimkus

5.2.2.69.setFilterPosition:
5.2.2.69.1.Semantics

Sets the filter to position in front of the CCD.

The position is 1-relative.

The filter is moved into position immediately.

5.2.2.69.2.Declaration
- (QSIStatus) setFilterPosition : (in uint8_t) aFilterPosition;

5.2.2.69.3.Parameters

Name In/Out Usage

aFilterPosition In The filter to position in front of the CCD.

5.2.2.69.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINoFilter The camera has no filters.

QSIInvalid
Parameter

The specified filter position is out of range.

5.2.2.69.5.Notes

5.2.2.70.setFocusOffset:forFilter:
5.2.2.70.1.Semantics

Sets the focus offset adjustment for the specified filter.

The position is 1-relative.

5.2.2.70.2.Declaration
- (QSIStatus) setFocusOffset : (in int32_t) aFocusOffset
! ! forFilter : (in uint8_t) aFilterPosition;

5.2.2.70.3.Parameters

Name In/Out Usage

aFocusOffset In The filter’s focus offset adjustment.

aFilterPosition In The position of the filter in question.

54
Copyright © 2012, Joe Shimkus

5.2.2.70.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINoFilter The camera has no filters.

QSIInvalid
Parameter

The specified filter position is out of range.

5.2.2.70.5.Notes

5.2.2.71.setGain:
5.2.2.71.1.Semantics

Sets the camera’s gain.

If successful, the value is stored in the camera’s persistent settings.

5.2.2.71.2.Declaration
- (QSIStatus) setGain : (in QSICameraGain) aGain;

5.2.2.71.3.Parameters

Name In/Out Usage

aGain In The gain to set.

5.2.2.71.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

5.2.2.71.5.Notes

5.2.2.72.setLEDEnabled:
5.2.2.72.1.Semantics

Turns the camera’s LED status indicator on and off.

If successful, the value is stored in the camera’s persistent settings.

55
Copyright © 2012, Joe Shimkus

5.2.2.72.2.Declaration
- (QSIStatus) setLEDEnabled : (in bool) anLEDEnabled;

5.2.2.72.3.Parameters

Name In/Out Usage

anLEDEnabled In YES, the LED status indicator is turned on.

NO, the LED status indicator is turned off.

5.2.2.72.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

5.2.2.72.5.Notes

5.2.2.73.setMainCamera:
5.2.2.73.1.Semantics

Set the camera to serving as either the main camera or a guiding camera.

In order to change the camera from main to guiding, or vice-versa, there must not be an
extant connection to the camera.

5.2.2.73.2.Declaration
- (QSIStatus) setMainCamera : (in bool) aMainCamera;

5.2.2.73.3.Parameters

Name In/Out Usage

aMainCamera In YES, set the camera to be the main camera.

NO, set the camera to be a guiding camera.

5.2.2.73.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSIConnected There is a connection to the camera.

56
Copyright © 2012, Joe Shimkus

5.2.2.73.5.Notes

5.2.2.74.setMaxPixelsPerBlock:
5.2.2.74.1.Semantics

Sets the maximum number of pixels the camera will read from the CCD in a single operation.

5.2.2.74.2.Declaration
- (QSIStatus) setMaxPixelsPerBlock :
! ! ! ! ! (in int32_t) aMaxPixelsPerBlock;

5.2.2.74.3.Parameters

Name In/Out Usage

aMaxPixelsPerBlock In The maximum number of pixels the camera will read
in a single operation from the CCD.

5.2.2.74.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.74.5.Notes

5.2.2.75.setName:forFilter:
5.2.2.75.1.Semantics

Sets the name for the specified filter.

The position is 1-relative.

5.2.2.75.2.Declaration
- (QSIStatus) setName : (in NSString *) aName
! forFilter : (in uint8_t) aFilterPosition;

5.2.2.75.3.Parameters

Name In/Out Usage

aName In The filter’s name.

aFilterPosition In The position of the filter in question.

57
Copyright © 2012, Joe Shimkus

5.2.2.75.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINoFilter The camera has no filters.

QSIInvalid
Parameter

The specified filter position is out of range.

5.2.2.75.5.Notes

5.2.2.76.setPreExposureFlush:
5.2.2.76.1.Semantics

Sets the camera’s pre-exposure flush setting.

If successful, the value is stored in the camera’s persistent settings.

5.2.2.76.2.Declaration
- (QSIStatus) setPreExposureFlush :
! ! (in QSICameraPreExposureFlush) aPreExposureFlush;

5.2.2.76.3.Parameters

Name In/Out Usage

aPreExposureFlush In The pre-exposure flush setting to set.

5.2.2.76.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

5.2.2.76.5.Notes

5.2.2.77.setReadoutSpeed:
5.2.2.77.1.Semantics

Sets the camera’s readout speed.

If successful, the value is stored in the camera’s persistent settings.

58
Copyright © 2012, Joe Shimkus

5.2.2.77.2.Declaration
- (QSIStatus) setReadoutSpeed :
! ! ! ! (in QSICameraReadoutSpeed) aReadoutSpeed;

5.2.2.77.3.Parameters

Name In/Out Usage

aReadoutSpeed Out The readout speed to which to set the camera.

5.2.2.77.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

5.2.2.77.5.Notes

5.2.2.78.setRowBinning:
5.2.2.78.1.Semantics

Sets the camera’s row binning value.

5.2.2.78.2.Declaration
- (QSIStatus) setRowBinning : (in uint16_t) aBinning;

5.2.2.78.3.Parameters

Name In/Out Usage

aBinning In The row binning value to use.

5.2.2.78.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSIInvalid
Parameter

The specified binning value is out of the supported range.

5.2.2.78.5.Notes

59
Copyright © 2012, Joe Shimkus

5.2.2.79.setShutterPriority:
5.2.2.79.1.Semantics

Set’s the camera’s shutter priority.

If successful, the value is stored in the camera’s persistent settings.

5.2.2.79.2.Declaration
- (QSIStatus) setShutterPriority :
! ! ! (in QSICameraShutterPriority) aShutterPriority;

5.2.2.79.3.Parameters

Name In/Out Usage

aShutterPriority In The shutter priority to set.

5.2.2.79.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

5.2.2.79.5.Notes

5.2.2.80.setSoundEnabled:
5.2.2.80.1.Semantics

Turns the camera’s sound status indicator on and off.

If successful, the value is stored in the camera’s persistent settings.

5.2.2.80.2.Declaration
- (QSIStatus) setSoundEnabled : (in bool) aSoundEnabled;

5.2.2.80.3.Parameters

Name In/Out Usage

aSoundEnabled In YES, the sound status indicator is turned on.

NO, the sound status indicator is turned off.

5.2.2.80.4.Return Values

Value Significance

QSISuccess The method completed successfully.

60
Copyright © 2012, Joe Shimkus

Value Significance

QSINotConnected There is no connection to the camera.

QSINotSupported The requested functionality is not supported by the camera.

5.2.2.80.5.Notes

5.2.2.81.supportsAsymmetricBinning:
5.2.2.81.1.Semantics

Returns whether or not the camera supports asymmetric binning.

5.2.2.81.2.Declaration
- (QSIStatus) supportsAsymmetricBinning :
! ! ! ! (out bool *) aSupportsAsymmetricBinning;

5.2.2.81.3.Parameters

Name In/Out Usage

aSupportsAsymmetric
Binning

Out YES, the camera supports asymmetric binning.

NO, the camera does not support asymmetric
binning.

5.2.2.81.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.81.5.Notes

5.2.2.82.temperature:
5.2.2.82.1.Semantics

Returns the camera’s temperature information.

The returned object has been auto-released.

5.2.2.82.2.Declaration
- (QSIStatus) temperature :
! ! ! (out QSICameraTemperature * *) aTemperature;

61
Copyright © 2012, Joe Shimkus

5.2.2.82.3.Parameters

Name In/Out Usage

aTemperature Out The camera’s temperature information.

5.2.2.82.4.Return Values

Value Significance

QSISuccess The method completed successfully.

QSINotConnected There is no connection to the camera.

5.2.2.82.5.Notes

62
Copyright © 2012, Joe Shimkus

5.3. QSICamera
5.3.1. Semantics

Implements the QSICamera interface.

Provides access to camera status and control.

5.3.2. Class APIs
5.3.2.1. simulatedCameras
5.3.2.1.1. Semantics

This method returns an array of cameras which, while not allowing soup-to-nuts testing of
QSICamera, allows testing of its higher-level functionality.

More usefully, these simulated cameras allow the development of applications incorporating
QSICamera without requiring the actual connection of a camera from QSI.

5.3.2.1.2. Declaration
+ (NSArray *) simulatedCameras

5.3.2.1.3. Parameters

Name In/Out Usage

n/a n/a n/a

5.3.2.1.4. Return Values

Value Significance

NSArray instance0 Array containing instances of simulated camera objects0

5.3.2.1.5. Notes

63
Copyright © 2012, Joe Shimkus

5.4. QSICameraAdvancedDetails
5.4.1. Semantics

Used to report the advanced details of the camera.

5.4.2. Definition
@interface QSICameraAdvancedDetails : QSIObject <NSCopying>0
{
@private
 bool _antiBloomingEnabled;
 QSICameraAntiBloom _antiBloomingIndex;

 bool _cameraGainEnabled;
 QSICameraGain _cameraGainIndex;

 bool _fanModeEnabled;
 QSICameraFanMode _fanModeIndex;

 bool _ledIndicatorDefault;
 bool _ledIndicatorEnabled;

 bool _optimizationsEnabled;
 bool _optimizeReadoutSpeed;

 bool _preExposureFlushEnabled;
 QSICameraPreExposureFlush _preExposureFlushIndex;

 bool _showDownloadProgressDefault;
 bool _showDownloadProgressEnabled;

 bool _shutterPriorityEnabled;
 QSICameraShutterPriority _shutterPriorityIndex;

 bool _soundOnDefault;
 bool _soundOnEnabled;
}

@property (nonatomic, assign) bool !_antiBloomingEnabled;
@property (nonatomic, assign) QSICameraAntiBloom
! ! ! ! ! ! _antiBloomingIndex;

@property (nonatomic, assign) bool !_cameraGainEnabled;
@property (nonatomic, assign) QSICameraGain
! ! ! ! ! ! _cameraGainIndex;

@property (nonatomic, assign) bool !_fanModeEnabled;
@property (nonatomic, assign) QSICameraFanMode
! ! ! ! ! ! _fanModeIndex;

@property (nonatomic, assign) bool !_ledIndicatorDefault;
@property (nonatomic, assign) bool !_ledIndicatorEnabled;

@property (nonatomic, assign) bool !_optimizationsEnabled;

64
Copyright © 2012, Joe Shimkus

@property (nonatomic, assign) bool !_optimizeReadoutSpeed;

@property (nonatomic, assign) bool! _preExposureFlushEnabled;
@property (nonatomic, assign) QSICameraPreExposureFlush
! ! ! ! ! ! _preExposureFlushIndex;

@property (nonatomic, assign) bool !_showDownloadProgressDefault;
@property (nonatomic, assign) bool !_showDownloadProgressEnabled;

@property (nonatomic, assign) bool !_shutterPriorityEnabled;
@property (nonatomic, assign) QSICameraShutterPriority
! ! ! ! ! ! _shutterPriorityIndex;

@property (nonatomic, assign) bool! _soundOnDefault;
@property (nonatomic, assign) bool! _soundOnEnabled;

@end

5.4.3. Notes

65
Copyright © 2012, Joe Shimkus

5.5. QSICameraAdvancedSettingsParameters
5.5.1. Semantics

Used to set the camera’s advanced settings.

5.5.2. Definition
@interface QSICameraAdvancedSettingsParameters : QSIObject <NSCopying>0
{
@private
 QSICameraAntiBloom _antiBloomingIndex;
 QSICameraGain _cameraGainIndex;
 QSICameraFanMode _fanModeIndex;
 bool _ledIndicatorOn;
 bool _optimizeReadoutSpeed;
 QSICameraPreExposureFlush _preExposureFlushIndex;
 bool _showDownloadProgress;
 QSICameraShutterPriority _shutterPriorityIndex;
 bool _soundOn;
}

@property (nonatomic, assign) QSICameraAntiBloom
! ! ! ! ! ! _antiBloomingIndex;
@property (nonatomic, assign) QSICameraGain
! ! ! ! ! ! _cameraGainIndex;
@property (nonatomic, assign) QSICameraFanMode
! ! ! ! ! ! _fanModeIndex;
@property (nonatomic, assign) bool! _ledIndicatorOn;
@property (nonatomic, assign) bool! _optimizeReadoutSpeed;
@property (nonatomic, assign) QSICameraPreExposureFlush
! ! ! ! ! ! _preExposureFlushIndex;
@property (nonatomic, assign) bool! _showDownloadProgress;
@property (nonatomic, assign) QSICameraShutterPriority
! ! ! ! ! ! _shutterPriorityIndex;
@property (nonatomic, assign) bool! _soundOn;

@end

5.5.3. Notes

66
Copyright © 2012, Joe Shimkus

5.6. QSICameraAntiBloom
5.6.1. Semantics

Used to report and set the camera’s anti-blooming setting.

5.6.2. Definition
typedef enum
{
 antiBloomNormal!= 0,
 antiBloomHigh! = 1
} QSICameraAntiBloom;

5.6.3. Notes

67
Copyright © 2012, Joe Shimkus

5.7. QSICameraAutoZero
5.7.1. Semantics

Used to report the auto-zero values of the camera.

5.7.2. Definition
@interface QSICameraAutoZero : QSIObject <NSCopying>0
{
@private
 uint16_t _pixelCount;
 bool _zeroEnabled;
 uint16_t _zeroLevel;
}

@property (nonatomic, assign) uint16_t _pixelCount;
@property (nonatomic, assign) bool _zeroEnabled;
@property (nonatomic, assign) uint16_t _zeroLevel;

@end

5.7.3. Notes

68
Copyright © 2012, Joe Shimkus

5.8. QSICameraAutoZeroControl
5.8.1. Semantics

Used to report and set the user’s auto-zero control parameters.

5.8.2. Definition
@interface QSICameraAutoZeroControl : QSIObject <NSCopying>0
{
@private
 bool _autoZeroEnabled;
 int32_t _autoZeroMaxADU;
 bool _autoZeroMedian;
 int32_t _autoZeroSaturationThreshold;
 int32_t _autoZeroSkipEndPixels;
 int32_t _autoZeroSkipStartPixels;
}

@property (nonatomic, assign) bool _autoZeroEnabled;
@property (nonatomic, assign) int32_t _autoZeroMaxADU;
@property (nonatomic, assign) bool _autoZeroMedian;
@property (nonatomic, assign) int32_t _autoZeroSaturationThreshold;
@property (nonatomic, assign) int32_t _autoZeroSkipEndPixels;
@property (nonatomic, assign) int32_t _autoZeroSkipStartPixels;

@end

5.8.3. Notes

69
Copyright © 2012, Joe Shimkus

5.9. QSICameraCCDSpecs
5.9.1. Semantics

Used to report the characteristics of the camera’s CCD chip.

5.9.2. Definition
@interface QSICameraCCDSpecs : QSIObject <NSCopying>0
{
@private
 double _electronsPerADUHigh;
 double _electronsPerADULow;
 double _fullWell;
 uint16_t _maxADU;
 double _maxExposure; // in seconds
 double _minExposure; // in seconds
}

@property (nonatomic, assign) double _electronsPerADUHigh;
@property (nonatomic, assign) double _electronsPerADULow;
@property (nonatomic, assign) double _fullWell;
@property (nonatomic, assign) uint16_t _maxADU;
@property (nonatomic, assign) double _maxExposure;
@property (nonatomic, assign) double _minExposure;

@end

5.9.3. Notes

70
Copyright © 2012, Joe Shimkus

5.10.QSICameraCombinedDetails
5.10.1.Semantics

Provides “one stop” access to both the camera details and CCD characteristics.

5.10.2.Definition
@interface QSICameraCombinedDetails : QSIObject <NSCopying>0
{
@private
 QSICameraCCDSpecs *_ccdSpecs;
 QSICameraDetails *_details;
}

@property (nonatomic, readonly) QSICameraCCDSpecs *_ccdSpecs;
@property (nonatomic, readonly) QSICameraDetails *_details;

@end

5.10.3.Notes

71
Copyright © 2012, Joe Shimkus

5.11.QSICameraCoolerState
5.11.1.Semantics

Used to report the camera’s cooler’s state.

5.11.2.Definition
typedef enum
{
 coolerOff, ! // Cooler is off
 coolerOn, ! // Cooler is on
 coolerAtAmbient, ! // Cooler is on and regulating at ambient
! ! ! ! //! temperature
 coolerGoToAmbient,! // Cooler is on and ramping to ambient
 coolerNoControl, ! // Cooler cannot be controlled on this camera
 coolerInitializing, ! // Cooler control is initializing
 coolerIncreasing, ! // Cooler temperature is going up
 coolerDecreasing, ! // Cooler temperature is going down
 coolerBrownout ! // Cooler brownout condition
} QSICameraCoolerState;

5.11.3.Notes

72
Copyright © 2012, Joe Shimkus

5.12.QSICameraDetails
5.12.1.Semantics

Used to report the camera details.

5.12.2.Definition
@interface QSICameraDetails : QSIObject <NSCopying>0
{
@private
 uint16_t _arrayColumns;
 uint16_t _arrayRows;
 bool _hasCamera;
 bool _hasFilterWheel;
 bool _hasRelays;
 bool _hasShutter;
 bool _hasTemperatureRegulator;
 uint8_t _maxHorizontalBinning;
 uint8_t _maxVerticalBinning;
 NSString *_modelName;
 NSString *_modelNumber;
 uint8_t _numberOfFilters;
 uint16_t _numberOfRowsPerBlock;
 bool _perBlockControl;
 double _pixelHeight;
 double _pixelWidth;
 bool _powerOfTwoBinning;
 NSString *_serialNumber;
 bool _supportsAsymmetricBinning;
}

@property (nonatomic, assign) uint16_t _arrayColumns;
@property (nonatomic, assign) uint16_t _arrayRows;
@property (nonatomic, assign) bool _hasCamera;
@property (nonatomic, assign) bool _hasFilterWheel;
@property (nonatomic, assign) bool _hasRelays;
@property (nonatomic, assign) bool _hasShutter;
@property (nonatomic, assign) bool _hasTemperatureRegulator;
@property (nonatomic, assign) uint8_t _maxHorizontalBinning;
@property (nonatomic, assign) uint8_t _maxVerticalBinning;
@property (nonatomic, retain) NSString *_modelName;
@property (nonatomic, retain) NSString *_modelNumber;
@property (nonatomic, assign) uint8_t _numberOfFilters;
@property (nonatomic, assign) uint16_t _numberOfRowsPerBlock;
@property (nonatomic, assign) bool _perBlockControl;
@property (nonatomic, assign) double _pixelHeight;
@property (nonatomic, assign) double _pixelWidth;
@property (nonatomic, assign) bool _powerOfTwoBinning;
@property (nonatomic, retain) NSString *_serialNumber;
@property (nonatomic, assign) bool _supportsAsymmetricBinning;

@end

73
Copyright © 2012, Joe Shimkus

5.12.3.Notes

74
Copyright © 2012, Joe Shimkus

5.13.QSICameraExposureParameters
5.13.1.Semantics

Used to set the parameters for an exposure.

5.13.2.Definition
@interface QSICameraExposureParameters : QSIObject <NSCopying>0
{
@private
 uint16_t _columnBinning;
 uint32_t _duration;
 uint8_t _durationUsec;
 bool _fastReadout;
 uint16_t _height;
 bool _holdShutterOpen;
 bool _openShutter;
 bool _probeForImplemented;
 uint16_t _repeatCount;
 uint16_t _rowBinning;
 uint16_t _startingColumn;
 uint16_t _startingRow;
 bool _strobeShutterOutput;
 bool _useExternalTrigger;
 uint16_t _width;
}

@property (nonatomic, assign) uint16_t _columnBinning;
@property (nonatomic, assign) uint32_t _duration;
@property (nonatomic, assign) uint8_t _durationUsec;
@property (nonatomic, assign) bool _fastReadout;
@property (nonatomic, assign) uint16_t _height;
@property (nonatomic, assign) bool _holdShutterOpen;
@property (nonatomic, assign) bool _openShutter;
@property (nonatomic, assign) bool _probeForImplemented;
@property (nonatomic, assign) uint16_t _repeatCount;
@property (nonatomic, assign) uint16_t _rowBinning;
@property (nonatomic, assign) uint16_t _startingColumn;
@property (nonatomic, assign) uint16_t _startingRow;
@property (nonatomic, assign) bool _strobeShutterOutput;
@property (nonatomic, assign) bool _useExternalTrigger;
@property (nonatomic, assign) uint16_t _width;

@end

5.13.3.Notes

75
Copyright © 2012, Joe Shimkus

5.14.QSICameraExposureRequest
5.14.1.Semantics

Used to set all the camera’s parameters that impact exposure.

5.14.2.Definition
@interface QSICameraExposureRequest : QSIObject
{
@private
 QSICameraAntiBloom _antiBlooming;
 QSICameraGain _cameraGain;
 QSICameraPreExposureFlush _preExposureFlush;
 QSICameraReadoutSpeed _readoutSpeed;
 QSICameraShutterPriority _shutterPriority;

 uint16_t _columnBinning;
 uint32_t _duration;
 uint16_t _height;
 bool _openShutter;
 uint16_t _rowBinning;
 uint16_t _startingColumn;
 uint16_t _startingRow;
 uint16_t _width;

 uint8_t _filterPosition;
}

@property (assign) QSICameraAntiBloom _antiBlooming;
@property (assign) QSICameraGain _cameraGain;
@property (assign) QSICameraPreExposureFlush _preExposureFlush;
@property (assign) QSICameraReadoutSpeed _readoutSpeed;
@property (assign) QSICameraShutterPriority _shutterPriority;

@property (assign) uint16_t _columnBinning;
@property (assign) uint32_t _duration;
@property (assign) uint16_t _height;
@property (assign) bool _openShutter;
@property (assign) uint16_t _rowBinning;
@property (assign) uint16_t _startingColumn;
@property (assign) uint16_t _startingRow;
@property (assign) uint16_t _width;

@property (assign) uint8_t _filterPosition;
@end

5.14.3.Notes

76
Copyright © 2012, Joe Shimkus

5.15.QSICameraFanMode
5.15.1.Semantics

Used to report and set the camera’s fan operating mode.

5.15.2.Definition
typedef enum
{
 fanOff! = 0,
 fanQuiet! = 1,
 fanFull! = 2
} QSICameraFanMode;

5.15.3.Notes

77
Copyright © 2012, Joe Shimkus

5.16.QSICameraGain
5.16.1.Semantics

Used to report and set the camera’s gain setting.

5.16.2.Definition
typedef enum
{
 gainHigh! = 0,
 gainLow! = 1
} QSICameraGain;

5.16.3.Notes

78
Copyright © 2012, Joe Shimkus

5.17.QSICameraGuiding
5.17.1.Semantics

Used to control the camera guiding operation.

5.17.2.Definition
typedef enum
{
 guidingAbort! = 0,
 guidingNorth! = 1,
 guidingSouth! = 2,
 guidingEast! = 3,
 guidingWest! = 4
} QSICameraGuiding;

5.17.3.Notes

79
Copyright © 2012, Joe Shimkus

5.18.QSICameraPreExposureFlush
5.18.1.Semantics

Used to report and set the camera’s pre-exposure flush setting.

5.18.2.Definition
typedef enum
{
 preExposureFlushNone! ! ! = 0,
 preExposureFlushModest! ! = 1,
 preExposureFlushNormal! ! = 2,
 preExposureFlushAggressive! ! = 3,
 preExposureFlushVeryAggressive! = 4,
} QSICameraPreExposureFlush;

5.18.3.Notes

80
Copyright © 2012, Joe Shimkus

5.19.QSICameraReadoutSpeed
5.19.1.Semantics

Used to report and set the camera’s readout speed.

5.19.2.Definition
typedef enum
{
 readoutSpeedHighQuality! = 0,
 readoutSpeedFast! ! = 1
} QSICameraReadoutSpeed;

5.19.3.Notes

81
Copyright © 2012, Joe Shimkus

5.20.QSICameraShutterPriority
5.20.1.Semantics

Used to report and set the camera’s shutter priority setting.

5.20.2.Definition
typedef enum
{
 shutterPriorityMechanical! = 0,
 shutterPriorityElectronic! = 1
} QSICameraShutterPriority;

5.20.3.Notes

82
Copyright © 2012, Joe Shimkus

5.21.QSICameraState
5.21.1.Semantics

Used to report the camera’s current state.

5.21.2.Definition
typedef enum
{
 stateIdle!! ! = 0,! // Available to start exposure
 stateWaiting! ! = 1,! // Exposure started but waiting
 stateExposing! ! = 2,! // Exposure in progress
 stateReading! ! = 3,! // Reading CCD
 stateDownloading! = 4,! // Downloading data to computer
 stateError! ! = 5! // Error, no further operations tenable
} QSICameraState;

5.21.3.Notes

83
Copyright © 2012, Joe Shimkus

5.22.QSICameraTemperature
5.22.1.Semantics

Used to report the camera’s temperature data.

5.22.2.Definition
@interface QSICameraTemperature : QSIObject <NSCopying>0
{
@private
 double _ambientTemperature;
 uint16_t _coolerPower;
 QSICameraCoolerState _coolerState;
 double _coolerTemperature;
}

@property (nonatomic, assign) double! _ambientTemperature;
@property (nonatomic, assign) uint16_t! _coolerPower;
@property (nonatomic, assign) QSICameraCoolerState
! ! ! ! ! ! ! _coolerState;
@property (nonatomic, assign) double! _coolerTemperature;

@end

5.22.3.Notes

84
Copyright © 2012, Joe Shimkus

5.23.QSICameraTemperatureParameters
5.23.1.Semantics

Used to control the camera’s temperature.

5.23.2.Definition
@interface QSICameraTemperatureParameters : QSIObject <NSCopying>0
{
@private
 bool _coolerOn;
 bool _goToAmbient;
 double _setPoint;
}

@property (nonatomic, assign) bool _coolerOn;
@property (nonatomic, assign) bool _goToAmbient;
@property (nonatomic, assign) double _setPoint;

@end

5.23.3.Notes

85
Copyright © 2012, Joe Shimkus

5.24.QSIFilter
5.24.1.Semantics
5.24.2.APIs
5.24.2.1.focusOffset
5.24.2.1.1.Semantics

Returns the focus adjustment for the filter.

5.24.2.1.2.Declaration
- (int32_t) focusOffset;

5.24.2.1.3.Parameters

Name In/Out Usage

n/a n/a n/a

5.24.2.1.4.Return Values

Value Significance

any The filter’s focus offset

5.24.2.1.5.Notes

5.24.2.2.name
5.24.2.2.1.Semantics

Returns the name of the filter.

5.24.2.2.2.Declaration
- (NSString *) name;

5.24.2.2.3.Parameters

Name In/Out Usage

n/a n/a n/a

5.24.2.2.4.Return Values

Value Significance

NSString * The filter’s name

5.24.2.2.5.Notes

86
Copyright © 2012, Joe Shimkus

5.24.2.3.setFocusOffset
5.24.2.3.1.Semantics

Sets the focus adjustment for the filter.

5.24.2.3.2.Declaration
- (void) setFocusOffset : (int32_t) aFocusOffset;

5.24.2.3.3.Parameters

Name In/Out Usage

aFocusOffset In The value to set for the filter’s offset

5.24.2.3.4.Return Values

Value Significance

n/a n/a

5.24.2.3.5.Notes

5.24.2.4.setName
5.24.2.4.1.Semantics

Sets the name of the filter.

5.24.2.4.2.Declaration
- (void) setName : (NSString *) aName;

5.24.2.4.3.Parameters

Name In/Out Usage

aName In The value to set for the filter’s name

5.24.2.4.4.Return Values

Value Significance

n/a n/a

5.24.2.4.5.Notes

5.24.2.5.setTrim
5.24.2.5.1.Semantics

Sets the trim adjustment for the filter.

87
Copyright © 2012, Joe Shimkus

5.24.2.5.2.Declaration
- (void) setTrim : (int16_t) aTrim;

5.24.2.5.3.Parameters

Name In/Out Usage

aTrim In The value to set for the filter’s trim adjustment

5.24.2.5.4.Return Values

Value Significance

n/a n/a

5.24.2.5.5.Notes

5.24.2.6.trim
5.24.2.6.1.Semantics

Returns the trim adjustment for the filter.

5.24.2.6.2.Declaration
- (int16_t) trim;

5.24.2.6.3.Parameters

Name In/Out Usage

n/a n/a n/a

5.24.2.6.4.Return Values

Value Significance

any The filter’s trim adjustment

5.24.2.6.5.Notes

88
Copyright © 2012, Joe Shimkus

